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Abstract. This paper deals with characterizations of Hartley proper efficiency in a vector
optimization problem involving nonconvex and nondifferentiable functions. The case when
objective and constraint functions are locally Lipschitz is also considered. Sufficient conditions

for Hartley proper efficiency in locally Lipschitz programs are given under a near invex-
infineness assumption first introduced in this paper.
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1. Introduction

Since the appearance of the paper [15] where a notion of proper efficiency
was first introduced, several authors [2–6, 9, 11, 13] have proposed various
modified versions of this notion. A comprehensive survey of proper effi-
ciencies can be found in [10]. Characterizations of these notions are mainly
obtained in problems with generalized convexity structure (see [2–6, 9, 11,
13]). The case of set-valued maps is considered in [16–18, 21]. Benson and
Morin [1] gave an important result characterizing Geoffrion proper effi-
ciency for a convex vector optimization problem in terms of the stability
for a related scalar optimization problem. Recently, Huang and Yang [14]
studied a general vector optimization problem without any convexity
assumption and obtained two characterizations of Geoffrion proper effi-
ciency one of which (see [14, Theorem 3.2]) was given by means of a stabil-
ity property of a related scalar optimization problem. The other
characterization of [14, Theorem 3.1] is formulated in terms of the exis-
tence of an exact penalty function of a constrained program.
In this paper we prove several characterizations of Hartley proper effi-

ciency [11] for a vector optimization problem where no convexity structure
is required to be satisfied, and the cone defining the partial order of Euclid-
ean spaces is an arbitrary closed convex pointed cone. A detailed discussion
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is devoted to the case when this cone is polyhedral. Our characterizations
given in Theorems 2.1, 2.2, 2.4–2.6 show that problems of finding Hartley
properly efficient points are equivalent to some scalar optimization prob-
lems. A modified version of [14, Theorem 3.2] (see our Theorem 2.3) is
introduced to prove that, similarly to the Geoffrion proper efficiency prop-
erty, the Hartley proper efficiency can be characterized in terms of the sta-
bility of suitable scalar optimization problems. We also consider problems
when objective and constraint functions are locally Lipschitz. Necessary
conditions for Hartley proper efficiency in nonsmooth vector optimization
problems are obtained by combining one of our characterizations with sca-
lar optimization results of Clarke [7]. These necessary conditions become
sufficient conditions for Hartley proper efficiency if inequality constraint
functions are nearly invex and equality constraint functions are nearly in-
fine. Here our notions of near invexity and near infineness are more general
than the corresponding notions of invexity and infineness introduced in
[19]. We also give several characterizations of near invexity and near infine-
ness, and provide one example proving that the class of nearly invex (resp.
nearly infine) maps is strictly broader than the class of invex (resp. infine)
maps.

2. Reduction Theorems: Characterizations of Hartley Proper Efficiency

In this paper each element of a s-dimensional Euclidean space R
s is identi-

fied with a column-vector i.e., an s� 1-matrix. So the inner product of two
vectors a and b of Rs can be written as asb where s denotes the transpose.
We denote by R

s
þ the nonnegative orthant of R

s. We write R instead of
R

1, and Rþ instead of R1
þ. We use the symbols A, coA and intA to denote

the closure, the convex hull and the interior of A � R
s. The empty set is

denoted by ;.
In this section we show that problems of finding a properly efficient

point of vector optimization problems can be reduced to problems of sca-
lar optimization. This suggests us to use the terminology ‘‘reduction theo-
rems’’ in this section. Proper efficiency in this paper is understood in the
sense of Hartley [11]. We first give the exact definition of this notion.
Let f : Rn ! R

s be an arbitrary vector-valued map with components
f i; i ¼ 1; 2; . . . ; s, and Q be a nonempty subset of Rn. Let D � R

s be a closed
convex pointed cone. Recall that D is pointed if y 2 D \ �D ¼) y ¼ 0.

Consider the following vector optimization problem (P):

minimize fðxÞ: ¼ ðf 1ðxÞ; f 2ðxÞ; . . . ; f sðxÞÞs

subject to x 2 Q:

A point x0 2 Q is called a D-efficient point of (P) if
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8x 2 Q; fðxÞ � fðx0Þ 62 �D n f0g:
A point x0 2 Q is called a Hartley properly efficient point (or more
exactly, a Hartley properly D-efficient point) of (P) if it is a D-efficient
point of (P) and if there exists a positive number M such that for each
f 2 Dþ \ S and x 2 Q with fsðfðxÞ � fðx0ÞÞ < 0 there exists ~f 2 Dþ \ S
such that

~fsðfðxÞ � fðx0ÞÞ > 0 ð2:1Þ
and

fsðfðx0Þ � fðxÞÞ
~fsðfðxÞÞ � fðx0ÞÞ

OM ð2:2Þ

where

Dþ ¼ fy 2 R
s : d syP0 8d 2 Dg;

S ¼ fy 2 R
s : kyk ¼ 1g:

Observe that Dþ \ S 6¼ ; by Proposition 2.1.4 of [20]. A number M > 0
satisfying the requirement of the above definition of Hartley proper effi-
ciency of x0 is called a Hartley constant of (P) at x0. The set of all Hartley
constants of (P) at x0 is denoted by Hðx0Þ.
Let us fix a point x0 2 Q and consider the following function �f depend-

ing on parameters M > 0 and f 2 Dþ:

�fðxÞ ¼ �fðM; f; xÞ ¼ fsðfðxÞ � fðx0ÞÞ þMkfkqð0; fðxÞ � fðx0Þ þDÞ;
ð2:3Þ

where qðy;AÞ denotes the distance from y 2 R
s to A � R

s. We observe that
the subset

Dþi: ¼ y 2 R
s : dsy > 0 8d 2 D n f0gf g

of Dþ is nonempty. We now give the first characterization of Hartley
proper efficiency.

THEOREM 2.1. Let x0 2 Q. If x0 is a Hartley properly efficient point of (P)
and M 2 Hðx0Þ then for any f 2 Dþ

min
x2Q

�fðxÞ ¼ �fðx0Þ ¼ 0; ð2:4Þ

where f is defined by (2.3). Conversely, if there exist M > 0 and f 2 Dþi such
that function (2.3) satisfies condition (2.4) then x0 is a Hartley properly effi-
cient point of (P).
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Proof. We first observe that for any y 2 R
s

inf
d2D

fsðyþ dÞ ¼ fsy if f 2 Dþ

�1 if f j2 Dþ:

�

Making use of this observation and a minimax theorem we see that

qð0; fðxÞ � fðx0Þ þDÞ ¼ inf
d2D
kfðxÞ � fðx0Þ þ dk

¼ inf
d2D

max
f2B

fsðfðxÞ � fðx0Þ þ dÞ

¼ max
f2B

inf
d2D

fsðfðxÞ � fðx0Þ þ dÞ

¼ max
f2Dþ\B

fsðfðxÞ � fðx0ÞÞ; ð2:5Þ

where B denotes the closed unit ball of Rs.
To prove the necessity part of Theorem 2.1 it suffices to show that

infx2Q �fðxÞP0 (since �fðx0Þ ¼ 0). Indeed, if f ¼ 0 then this inequality is clear.
Consider now the case f 2 Dþ n f0g. Assume to the contrary that �fðxÞ < 0
for some x 2 Q. Then, setting f ¼ kfk�1f we derive from (2.3) and (2.5)
that

f
sðfðxÞ � fðx0ÞÞ < 0;

f
sðfðxÞ � fðx0ÞÞ þMf̂sðfðxÞ � fðx0ÞÞ < 0

for all f̂ 2 Dþ \ B. This contradicts the Hartley proper efficiency of x0.
To prove the sufficiency part of Theorem 2.1 we observe from (2.3) to

(2.5) that

max
f̂2Dþ\B

ðfþMkfkf̂ÞsðfðxÞ � fðx0ÞÞP0; x 2 Q:

This implies that

max
f̂2Dþ\B

ðfþMkfkf̂ÞsðfðxÞ � fðx0Þ þ dÞP0; 8x 2 Q; 8d 2 D; ð2:6Þ

since fþMkfkf̂ 2 Dþ for all f̂ 2 Dþ \ B. From (2.6) and the continuity
property we get

max
f̂2Dþ\B

ðfþMkfkf̂ÞsyP0 ð2:7Þ

for all y 2 coneðfðQÞ � fðx0Þ þDÞ where cone A ¼ fka : k > 0; a 2 Ag and
cone A ¼ cone A. On the other hand, for all d 2 �D n f0g

max
f̂2Dþ\B

ðfþMkfkf̂Þsd < 0; ð2:8Þ

since fþMkfkf̂ 2 Dþi for all f̂ 2 Dþ \ B. Combining (2.7) and (2.8) yields
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�D \ coneðfðQÞ � fðx0Þ þDÞ ¼ f0g:
Observe that the last condition is exactly the definition of Benson proper
efficiency of x0 (see [2]). Thus, if there exist M > 0 and f 2 Dþi such that
(2.4) holds then x0 is a Benson properly efficient point of (P). To conclude
the proof it remains to note that under our assumptions imposed on D the
notions of Benson proper efficiency and Hartley proper efficiency coincide
(see [10, p. 9]). (

Before formulating Theorem 2.2 let us introduce the following function
depending on a parameter M > 0:

�FðxÞ ¼ �FðM; xÞ ¼ tðx; x0Þ þMqð0; fðxÞ � fðx0Þ þDÞ; x 2 Q; ð2:9Þ
where

tðx; x0Þ ¼ min
f2Dþ\S

fsðfðxÞ � fðx0ÞÞ: ð2:10Þ

THEOREM 2.2.
1. A point x0 2 Q is a Hartley properly efficient point of (P) if and only

if there exist M > 0 and f 2 Dþi such that function (2.3) satisfies con-
dition (2.4).

2. A point x0 2 Q is a Hartley properly efficient point of (P) if and only
if there exists M > 0 such that

min
x2Q

�FðxÞ ¼ �Fðx0Þ ¼ 0; ð2:11Þ

where �F is defined by (2.9).

Proof. Observe that Dþi 6¼ ; since D is a closed convex pointed cone.
Therefore the first part of Theorem 2.2 is immediate from Theorem 2.1.
Let us prove the second one. If x0 is a Hartley properly efficient point of
(P) then by Theorem 2.1 there exists M > 0 such that

min
f2Dþ\S

min
x2Q

�fðM; f;xÞ ¼ min
f2Dþ\S

�fðM; f;x0Þ ¼ 0:

To obtain (2.11) it remains to observe that

min
f2Dþ\S

min
x2Q

�fðM; f;xÞ ¼ min
x2Q

min
f2Dþ\S

�fðM; f; xÞ

¼ min
x2Q

�FðM; xÞ:

Conversely, let (2.11) hold where �F is defined by (2.9). Let f be an arbi-
trary point of Dþi. Then

tðx; x0ÞOkfk�1fsðfðxÞ � fðx0ÞÞ; x 2 Q:

Hence (2.11) ) (2.4) where �fðxÞ ¼ �fðM; kfk�1f;xÞ. The Hartley proper effi-
ciency of x0 is thus derived from Theorem 2.1. (
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COROLLARY 2.1. Let x0 be a D-efficient point of (P) and f be not constant
on Q. Then Qðx0Þ ¼ fx 2 Q : fðx0Þ � fðxÞ j2Dg 6¼ ;, and x0 is a Hartley prop-
erly efficient point of (P) if and only if

qðx0Þ :¼ sup
x2Qðx0Þ

�tðx; x0Þ
qð0; fðxÞ � fðx0Þ þDÞ < þ1: ð2:12Þ

Proof. Observe that x0 is a D-efficient point of (P) if and only if x 2 Qn
Qðx0Þ ) fðx0Þ ¼ fðxÞ. This proves that Qðx0Þ 6¼ ; if f is not constant on
Q. Also, if x0 is a D-efficient point of (P) then

x 2 Q nQðx0Þ (i.e. qð0; fðxÞ � fðx0Þ þDÞ ¼ 0Þ
) fðxÞ ¼ fðx0Þ
) tðx; x0Þ ¼ 0:

This shows that if x0 is a D-efficient point of (P) then
½ �FðM; xÞP0; 8x 2 Q� , ½ �FðM; xÞP0; 8x 2 Qðx0Þ�. From this and
from the second part of Theorem 2.2 we obtain Corollary 2.1. (
Before pointing out an estimate for the infimum of the set Hðx0Þ let us

introduce the following definition: a point x0 2 Q is called an ideal point
of (P) if for all x 2 Q; fðxÞ � fðx0Þ 2 D i.e., tðx; x0ÞP0. If D is the non-
negative orthant of R

s this property means that f iðxÞPf iðx0Þ for all
i ¼ 1; 2; . . . ; s, and x 2 Q. Such a property is rarely seen in practice. Obvi-
ously, an ideal point is a Hartley properly efficient point, but the converse
statement is no longer true.

COROLLARY 2.2. Let x0 2 Q be a Hartley properly efficient point of (P).
Then

1. 0 ¼ inffM :M 2 Hðx0Þg if x0 is an ideal point of (P).
2. 0 < qðx0Þ � inffM :M 2 Hðx0Þg if x0 is not an ideal point of (P).

Proof. The first assertion of Corollary 2.2 is clear. Indeed, if x0 is an
ideal point of (P) then, for all x 2 Q and f 2 Dþ \ S; fsðfðxÞ � fðx0ÞÞP0
and hence, any positive number M can be taken as a Hartley constant at
x0. This means that 0 ¼ inffM:M 2 Hðx0Þg.
To prove the second assertion of Corollary 2.2 let us assume that x0 is

not an ideal point of (P). We have seen in the proof of Corollary 2.1 that

x 2 Q nQðx0Þ ) tðx; x0Þ ¼ 0:

So, if Qðx0Þ ¼ ; or if tðx; x0ÞP0 for all x 2 Qðx0Þ then x0 must be an ideal
point of (P). From this remark and from the assumption that x0 is not an
ideal point of (P) we obtain Qðx0Þ 6¼ ; and tðx;x0Þ < 0 for some x 2 Qðx0Þ.
This proves that qðx0Þ > 0 (see 2.12)). In addition, we have seen in the proof
of Corollary 2.1 that M 2 Hðx0Þ )MPqðx0Þ. In other words, inffM:M 2
Hðx0ÞgPqðx0Þ. (
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REMARK 2.1. From Corollary 2.2 we see that if x0 2 Q is a Hartley
properly efficient point of (P) then

0 ¼ inffM : M 2 Hðx0Þg () x0 is an ideal point of (P):

0 < inffM : M 2 Hðx0Þg () x0 is not an ideal point of (P):

COROLLARY 2.3. If there exists f 2 Dþi such that the function fsfð�Þ
attains its minimum on Q at x0 2 Q then x0 is a Hartley properly efficient
point of (P).

Proof. Apply Theorem 2.2 and note that the assumptions of Corollary
2.3 imply (2.4). (

REMARK 2.2. Corollary 2.3 was established in [11, Theorem 6.2]. Before
giving other characterizations of Hartley proper efficiency let us consider
the following scalar optimization problem ð �P0Þ:

minimize uðxÞ
subject to x 2 Q;

fðxÞOD 0;

where u:Rn ! R is an arbitrary function and y1ODy2 means that
y2 � y1 2 D.
For each y 2 R

s we associate to ð �P0Þ a perturbed minimization problem,
denoted by ð �PyÞ:

minimize uðxÞ
subject to x 2 Q;

fðxÞODy:

Let us denote by AðyÞ the set of all points x satisfying the constraints of
Problem ð �PyÞ. We set

vðyÞ ¼ inffuðxÞ :x 2 AðyÞg if AðyÞ 6¼ ;;
þ1 if AðyÞ ¼ ;:

�

Let x0 be a minimizer of ð �P0Þ i.e.
vð0Þ ¼ inffuðxÞ :x 2 Að0Þg ¼ uðx0Þ:

We say that Problem ð �P0Þ is stable at x0 if there exists M > 0 such that

vðyÞ � vð0Þ
kyk P�M; y 6¼ 0: ð2:13Þ

Stability property of ð �P0Þ is characterized by the following lemma.

LEMMA 2.1. Let x0 be a minimizer of ð �P0Þ. Then Problem ð �P0Þ is stable at
x0 if and only if there exists M > 0 such that x0 is a minimizer of the function
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pð�Þ :¼ uð�Þ þMqð0; fð�Þ þDÞ
on the set Q.

Proof. (i) Necessity. Assume that ð �P0Þ is stable, but x0 is not a minimizer
of pð�Þ on Q. Then for some x 2 Q

uðxÞ < uðx0Þ �Mqð0; fðxÞ þDÞ: ð2:14Þ
Observe that qð0; fðxÞ þDÞ > 0 since x0 is a minimizer of ð �P0Þ. Let
y 2 fðxÞ þD be such that kyk ¼ qð0; fðxÞ þDÞ. Then kyk > 0; x 2 AðyÞ
and by (2.14)

vðyÞOuðxÞ < vð0Þ �Mkyk;
a contradiction to (2.13).
(ii) Sufficiency. By assumption

uðx0ÞOuðxÞ þMqð0; fðxÞ þDÞ; x 2 Q:

Hence for all y 2 R
s n f0g and x 2 AðyÞ

uðx0ÞOuðxÞ þMkyk;
which implies that

vð0ÞO inffuðxÞ : x 2 AðyÞg þMkyk
¼ vðyÞ þMkyk

i.e., (2.13) holds, as required. (

As a consequence of Theorem 2.2 and Lemma 2.1 we obtain the follow-
ing theorem.

THEOREM 2.3. Let x0 2 Q be a D-efficient point of (P). Then
1. A point x0 2 Q is a Hartley properly efficient point of (P) if and only

if there exists f 2 Dþi such that the following Problem ðPfÞ is stable at
x0:

minimize fsfðxÞ
subject to x 2 Q;

fðxÞ � fðx0ÞOD0:

2. A point x0 2 Q is a Hartley properly efficient point of (P) if and only if
the following problem is stable at x0:

minimize tðx; x0Þ
subject to x 2 Q;

fðxÞ � fðx0ÞOD0:
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Let us observe that x0 is a minimizer of each of the scalar optimization
problems mentioned in Theorem 2.3. This is a consequence of the assump-
tion that x0 is a D-efficient point of (P).

REMARK 2.3. Characterization of Geoffrion proper efficiency in terms of
stability property can be found in [14, Theorem 3.2]. Our Theorem 2.3 is a
modified version of [14, Theorem 3.2] for the case of Hartley proper effi-
ciency.
From now on we assume that D is a polyhedral cone given by

D ¼ fy 2 R
s : d s

i yP0; i 2 Ig; ð2:15Þ
where I ¼ f1; 2; . . . ;mg and di are fixed points of Rs with kdik ¼ 1. We also
assume that D is pointed. Observe that if D is defined by (2.15) then

Dþ ¼
X
i2I

aidi : aiP0; i 2 I

( )
: ð2:16Þ

It is known from [11, Theorem 6.1] that x0 is a Hartley properly efficient
point of (P) if and only if x0 is a D-efficient point of (P) and there exists a
number M > 0 such that for each x 2 Q and i 2 I with ds

i ðfðxÞ � fðx0ÞÞ < 0
there exists j 2 I such that

d s
j ðfðxÞ � fðx0ÞÞ > 0 ð2:17Þ

and

d s
i ðfðx0Þ � fðxÞÞ
d s
j ðfðxÞ � fðx0ÞÞ

OM: ð2:18Þ

If di; i 2 I, are the ith unit vectors of Rsði.e.,di ¼ ð0; . . . ; 0; 1; 0; . . . ; 0Þs 2 R
s

where the ith component of di is 1 and other components of di is 0) and if
s ¼ m then D ¼ R

s
þ and the Hartley properly efficient point coincides with

the Geoffrion properly efficient solution defined in [9].

THEOREM 2.4. A point x0 2 Q is a Hartley properly efficient point of (P)
and M 2 Hðx0Þ if and only if for each i 2 I

min
x2Q

�f iðxÞ ¼ �f iðx0Þ ¼ 0; ð2:19Þ

where

�f iðxÞ ¼ max
j2I
ðdi þMdjÞsðfðxÞ � fðx0ÞÞ: ð2:20Þ

Proof. (i) Necessity. It is easy to see that for each i 2 I; inf x2Q �f iðxÞP0:
Indeed, otherwise there exists i 2 I such that
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inf
x2Q

�f iðxÞ < 0;

and hence there exists x 2 Q such that �f iðxÞ < 0, that is,

for all j 2 I; ðdi þMdjÞsðfðxÞ � fðx0ÞÞ < 0: ð2:21Þ

From (2.21), we have for j ¼ i

ð1þMÞd s
i ðfðxÞ � fðx0ÞÞ < 0:

Hence d s
i ðfðxÞ � fðx0ÞÞ < 0: Thus by the definition of Hartely proper effi-

ciency we must find j 2 I n fig such that (2.17) and (2.18) hold. This implies
that

ðdi þMdjÞsðfðxÞ � fðx0ÞÞP0;

which contradicts (2.21). We have thus proved that

for each i 2 I; inf
x2Q

�f iðxÞP0:

But �f iðx0Þ ¼ 0. Thus for each i 2 I,

min
x2Q

�f iðxÞ ¼ �f iðx0Þ ¼ 0:

(ii) Sufficiency. We first claim that x0 is a D-efficient point. Indeed,
otherwise there exists x 2 Q such that

fðxÞ � fðx0Þ 2 �D n f0g: ð2:22Þ
From (2.22),

d s
i ðfðxÞ � fðx0ÞÞO0 for all j 2 I ð2:23Þ

and

d s
i ðfðxÞ � fðx0ÞÞ < 0 for some i 2 I: ð2:24Þ

Indeed, it is clear that (2.23) holds. Now, if for all i 2 I;
d s
i ðfðxÞ � fðx0ÞÞ ¼ 0, then ðfðxÞ � fðx0ÞÞ 2 D, but since D is pointed,
ðfðxÞ � fðx0ÞÞ 2 D \ ð�DÞ ¼ f0g, and hence fðxÞ ¼ fðx0Þ, which contradicts
(2.22). Thus (2.24) holds. From (2.23) to (2.24), for each j 2 I,

ðdi þMdjÞsðfðxÞ � fðx0ÞÞ < 0; i.e.; �f iðxÞ < 0;

which contradicts (2.19).
To prove that x0 is a Hartley properly efficient point of (P), let us take

x 2 Q and i 2 I with d s
i ðfðxÞ � fðx0ÞÞ < 0. Since by assumption �f iðxÞP0,

we must find an index j such that

ðdi þMdjÞsðfðxÞ � fðx0ÞÞP0:
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This proves that M satisfies the requirement of the Hartley proper effi-
ciency of x0. (

COROLLARY 2.4. Let x0 be a D-efficient point of (P) and f be not constant
on Q. Then

Q0ðx0Þ: ¼ x 2 Q : max
j2I

d s
j ðfðxÞ � fðx0ÞÞ > 0

� �
6¼ ;

and x0 is a Hartley properly efficient point of (P) if and only if

q0ðx0Þ: ¼ sup
x2Q0ðx0Þ

�min
j2I

d s
j ðfðxÞ � fðx0ÞÞ

max
j2I

d s
j ðfðxÞ � fðx0ÞÞ

< þ1:

Proof. Observe that x0 is a D-efficient point of (P) if and only if for all
x 2 Q

max
j2I

d s
j ðfðxÞ � fðx0ÞÞO0 ) fðxÞ ¼ fðx0Þ:

Since f is not constant on Q it follows from this observation that
Q0ðx0Þ 6¼ ;. Also, if x0 is a D-efficient point of (P) then x 2 Qn
Q0ðx0Þ ) fðxÞ ¼ fðx0Þ. Hence

½�f iðxÞP0; 8x 2 Q� , ½�f iðxÞP0; 8x 2 Q0ðx0Þ�:
Combining this with Theorem 2.4 we see that x0 is a Hartley properly effi-
cient point of (P) and M 2 Hðx0Þ if and only if, for all i 2 I and
x 2 Q0ðx0Þ,

d s
i ðfðx0Þ � fðxÞÞ

max
j2I

d s
j ðfðxÞ � fðx0ÞÞ

OM:

This is equivalent to saying that x0 is a Hartley properly efficient point of
(P) and M 2 Hðx0Þ if and only if q0ðx0ÞOM. Corollary 2.4 is thus estab-
lished. (

COROLLARY 2.5. Let x0 2 Q be a Hartley properly efficient point of (P).
Then
1. 0 ¼ inffM :M 2 Hðx0Þg if x0 is an ideal point of (P).
2. 0 < q0ðx0ÞO inffM : M 2 Hðx0Þg if x0 is not an ideal point of (P).

Proof. The first assertion of Corollary 2.5 is clear. To prove the second
one let us assume that x0 is not an ideal point of (P). Since x0 is a D-effi-
cient point of (P) we have seen in the proof of Corollary 2.4 that

HARTLEY PROPER EFFICIENCY 283



x 2 Q nQ0ðx0Þ ) fðxÞ � fðx0Þ ¼ 0:

Thus Q0ðx0Þ 6¼ ;. Indeed, otherwise for all x 2 Q fðxÞ � fðx0Þ ¼ 0 2 D, a
contradiction to the assumption that x0 is not an ideal point. To prove
that 0 < q0ðx0Þ it suffices to show that, for some x 2 Q0ðx0Þ;
min
j2I

d s
j ðfðxÞ � fðx0ÞÞ < 0. Indeed, otherwise min

j2I
d s
j ðfðxÞ � fðx0ÞÞ � 0 (i.e.,

fðxÞ � fðx0Þ 2 D) for all x 2 Q0ðx0Þ. On the other hand, fðxÞ � fðx0Þ ¼
0 2 D for all x 2 Q nQ0ðx0Þ. This proves that for all x 2 Q fðxÞ � fðx0Þ 2
D, a contradiction to the assumption that x0 is not an ideal point of (P).
Thus, inequality 0 < q0ðx0Þ is established. To see that q0ðx0ÞO inffM :
M 2 Hðx0Þg it is enough to remark from the proof of Corollary 2.4 that
M 2 Hðx0Þ ) q0ðx0ÞOM.
Before going further let us consider the following lemma.

LEMMA 2.2. Let M > 0; b ¼ ðb1; b2; . . . ; bmÞ 2 R
m and a ¼ ða1; a2; . . . ;

amÞ 2 R
m
þ n f0g. Then cP0 , c0P0 where

c ¼
X
i2I

aibi þMmaxðb1; b2; . . . ; bmÞ;

c0 ¼
X
i2I

aibi þM maxðb1; b2; . . . ; bm; 0Þ:

Proof. Let b ¼ maxðb1; b2; . . . ; bmÞ and b0 ¼ maxðb1; b2; . . . ; bm; 0Þ. Since
b0 � b we obviously have implication cP0) c0P0. To complete our proof
it suffices to show that c < 0) c0 < 0. Indeed, if b < 0 then bi < 0 for all
i 2 I, and b0 ¼ 0. Therefore c0 ¼

X
i2I

aibi < 0. If b � 0 then b ¼ b0 and

hence c ¼ c0. This proves that c<0 ) c0<0, as required. (

COROLLARY 2.6. A point x0 2 Q is a Hartley properly efficient point of
(P) and M 2 Hðx0Þ if and only if for each i 2 I

min
x2Q

�F iðxÞ ¼ �F iðx0Þ ¼ 0:

where

�F iðxÞ ¼ d s
i ðfðxÞ � fðx0ÞÞ
þMmaxðd s

1 ðfðxÞ � fðx0ÞÞ; . . . ; d s
mðfðxÞ � fðx0ÞÞ; 0Þ:

Proof. For fixed i 2 I let us set ai ¼ 1 and aj ¼ 0; j 6¼ i. Let bj ¼
ds
j ðfðxÞ � fðx0ÞÞ; j 2 I. Then for each x 2 Q by Lemma 2.2

�f iðxÞ � 0 , �FiðxÞ � 0. Thus x0 is a minimizer of �f i on Q if and only if x0
is a minimizer of �Fi on Q. From this remark and Theorem 2.4 we obtain
Corollary 2.6. (
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Now for a ¼ ða1; a2; . . . ; amÞ 2 R
m
þ and M > 0 let us introduce the follow-

ing function

f̂ðxÞ ¼f̂ðM; a;xÞ ¼
X
i2I

aids
i ðfðxÞ � fðx0ÞÞ

þM
X
i2I

ai
 !

max
j2I

ds
j ðfðxÞ � fðx0ÞÞ; x 2 Q: ð2:25Þ

THEOREM 2.5. Let x0 2 Q. If x0 is a Hartley properly efficient point of
(P) and M 2 Hðx0Þ then for all a ¼ ða1; a2; . . . ; amÞ 2 R

m
þ the function (2.25)

satisfies the following condition

min
x2Q

f̂ðxÞ ¼ f̂ðx0Þ ¼ 0: ð2:26Þ

Conversely, if there exist M > 0 and a vector a ¼ ða1; a2; . . . ; amÞ 2 R
m
þ with

positive components ai; i 2 I; such that the function (2.25) satisfies condition
(2.26) then x0 is a Hartely properly efficient point of ðPÞ.

Proof.
(i) Necessity. This is a consequence of Theorem 2.4. Indeed, multiplying

equalities (2.19) by ai and summing up the obtained equalities we get
(2.26), as desired.

(ii) Sufficiency. Since Dþ is defined by (2.16) and since D is a pointed
cone we can see that

X
j2I

ajdj 2 Dþi for all a ¼ ða1; a2; . . . ; amÞ 2 R
m
þ

with aj > 0; j 2 I. Now setting b ¼
X
i2I

ai and f ¼ b�1
X
j2I

ajdj 2 Dþi

we derive from (2.26) that

min
x2Q

~fðxÞ ¼ ~fðx0Þ ¼ 0; ð2:27Þ

where

~fðxÞ :¼ fsðfðxÞ � fðx0ÞÞ þMmax
j2I

d s
j ðfðxÞ � fðx0ÞÞ; x 2 Q:

Observing that dj 2 Dþ \ S; j 2 I, and taking account of (2.5) we see that

�fðM; f;xÞ � ~fðxÞ; x 2 Q;

and �fðM; f; x0Þ ¼ ~fðx0Þ ¼ 0. From this and (2.27) we claim that (2.4) holds.
To complete our proof it remains to apply Theorem 2.1 (

COROLLARY 2.7. If x0 2 Q is a Hartley properly efficient point of (P) and
M 2 Hðx0Þ then for all a ¼ ða1; a2; . . . ; amÞ 2 R

m
þ

min
x2Q

F̂ðxÞ ¼ F̂ðx0Þ ¼ 0; ð2:28Þ
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where

F̂ðxÞ ¼ F̂ðM; a; xÞ ¼
X
i2I

aids
i ðfðxÞ � fðx0ÞÞ

þM
X
i2I

ai
 !

maxðds
1ðfðxÞ � fðx0ÞÞ; ds

2ðfðxÞ

� fðx0ÞÞ; . . . ; ds
mðfðxÞ � fðx0ÞÞ; 0Þ: ð2:29Þ

Conversely, if x0 2 Q satisfies condition (2.28) with F̂ being defined by (2.29)
for some M > 0 and a ¼ ða1; a2; . . . ; anÞ 2 R

m
þ with ai > 0; i 2 I, then x0 is a

Hartley properly efficient point of (P).

Proof. Use Theorem 2.5 and observe from Lemma 2.2 that f̂ðxÞP0 ,
F̂ðxÞP0; x 2 Q. (

REMARK 2.4. In [14] Huang and Yang consider Problem (P) where
m ¼ s and di is the ith unit vector of R

m; i ¼ 1; 2; . . . ;m. In other words,
they assume that D ¼ R

m
þ and consider the Geoffrion proper efficiency of

x0. For ai > 0; i ¼ 1; 2; . . . ;m, they introduce the following function
depending on a parameter r 2 R:

�pðxÞ ¼
X
i2I

a if iðxÞ

þ rmaxðf 1ðxÞ � f 1ðx0Þ; f 2ðxÞ � f 2ðx0Þ; . . . ; f mðxÞ � f mðx0Þ; 0Þ
and prove in [14, Theorem 3.1] that a Rm

þ-efficient point x0 is a Geoffrion
properly efficient point of (P) if and only if there exists r > 0 such that x0
is a minimizer of �pð�Þ on Q. By taking di; i 2 I, to be the ith unit vector of
R

m we see that this result is a consequence of Corollary 2.7. From Corol-
lary 2.7 it follows that in the formulation of Theorem 3.1 of [14] the
assumption that x0 is a Rm

þ-efficient point is superfluous.
Now let us introduce the function

t0ðx;x0Þ ¼ min
X
i2I

aids
i ðfðxÞ � fðx0ÞÞ : aiP 0; i 2 I;

X
i2I

ai ¼ 1

( )
:

THEOREM 2.6.
1. A point x0 2 Q is a Hartley properly efficient point of (P) if and only

if there exist M > 0 and a ¼ ða1; a2; . . . ; amÞ 2 R
m
þ with ai > 0; i 2 I,

such that the function (2.25) satisfies condition (2.26).
2. A point x0 2 Q is a Hartley properly efficient point of (P) if and only

if there exists M > 0 such that
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min
x2Q

F̂ðxÞ ¼ F̂ðx0Þ ¼ 0; ð2:30Þ

where F̂ is defined by

F̂ðxÞ ¼ F̂ðM; xÞ ¼ t0ðx;x0Þ þMmax
j2I

ds
j ðfðxÞ � fðx0ÞÞ: ð2:31Þ

3. A point x0 2 Q is a Hartley properly efficient point of (P) if and only if
there exists M > 0 such that (2.30) is satisfied where, instead of (2.31), F̂
is defined by

F̂ðxÞ¼ F̂ðM;xÞ¼ t0ðx;x0ÞþMmaxðds
j ðfðxÞ� fðx0ÞÞ; . . . ;ds

mðfðxÞ� fðx0ÞÞ;0Þ:

Proof. The first part of Theorem 2.6 is a consequence of Theorem 2.5.
The second and third parts can be established by the same argument used
in the proof of Theorem 2.2. (

COROLLARY 2.8. Let x0 be a D-efficient point of (P) and f be not constant
on Q. Then Q0ðx0Þ 6¼ ;, and x0 is a Hartley properly efficient point of (P) if
and only if

sup
x2Q0ðx0Þ

�t0ðx; x0Þ
max
j2I

ds
j ðfðxÞ � fðx0ÞÞ

< þ1:

The proof is similar to that of Corollary 2.1 and is omitted.

3. Necessary Conditions for Hartley Proper Efficiency in Nonsmooth Vector

Optimization Problems

We first recall that the ordering cone D for (P) is the polyhedral cone
defined in (2.15). Now we introduce some notions of Nonsmooth Analysis
[7]. Let W : Rn ! R be a locally Lipschitz function. The Clarke subdifferen-
tial of W at x0 2 R

n is the set

oWðx0Þ ¼ fn 2 R
n : xsnOW0ðx0; xÞ; 8x 2 R

ng;
where

W0ðx0; xÞ ¼ lim sup
x0!x0
t#0

1

t
½Wðx0 þ txÞ �Wðx0Þ�:

The Clarke tangent cone and the Clarke normal cone of a subset C � R
n

at x0 2 C are denoted by TCðx0Þ and NCðx0Þ, respectively. Recall that

TCðx0Þ ¼ fg 2 R
n : q0

Cðx0; gÞ ¼ 0g;
NCðx0Þ ¼ fn 2 R

n : nTgO0; 8g 2 TCðx0Þg;
where qCðxÞ ¼ qðx;CÞ i.e., qCðxÞ is the distance from x 2 R

n to C.
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From now on we assume that

Q ¼ fx 2 C : g jðxÞO0; j ¼ 1; 2; . . . ; p; hlðxÞ ¼ 0; l ¼ 1; 2; . . . ; qg
where C � R

n is a closed subset, and g j and h l are given functions. We
also assume that all functions f i; g j and h l are locally Lipschitz. Let x0 2 Q
and let

Jðx0Þ ¼ fj : g jðx0Þ ¼ 0g:
We say that condition (CQ) holds at x0 if there do not exist ljP0; j 2 Jðx0Þ,
and rl 2 R; l ¼ 1; 2; . . . ; q, such that

P
j2Jðx0Þ

lj þ
Pq
l¼1
jrlj 6¼ 0 and

0 2
X

j2Jðx0Þ
ljog jðx0Þ þ

Xq
l¼1

rlohlðx0Þ þNCðx0Þ;

where og jðx0Þ and ohlðx0Þ are the Clarke subdifferentials of g j and hl at x0,
and NCðx0Þ stands for the Clarke normal cone to C at x0. We will denote
by oðd s

i fÞðx0Þ the Clarke subdifferential of d s
i fð�Þ at x0.

As an application of Theorem 2.5 of the previous section we obtain the
following result.

THEOREM 3.1. Let x0 2 Q and let condition (CQ) hold. If x0 2 Q is a
Hartley properly efficient point of (P) then there exist ki > 0; i ¼ 1; . . . ;m;
ljP0; j 2 Jðx0Þ; rl 2 R; l ¼ 1; 2; . . . ; q, such that

0 2
Xm
i¼1

kioðd s
i fÞðx0Þ þ

X
j2Jðx0Þ

l jog jðx0Þ þ
Xq
l¼1

rlohlðx0Þ þNCðx0Þ: ð3:1Þ

Proof. Setting ai ¼ 1, i 2 I, and applying Theorem 2.5 we see that x0 is
a solution of the problem of minimizing the function f̂ðxÞ subject to x 2 Q
where

f̂ðxÞ ¼
Xm
i¼1

d s
i ðfðxÞ � fðx0ÞÞ þmMmax

j2I
d s
j ðfðxÞ � fðx0ÞÞ

and M is a Hartley constant of (P) at x0. By a result of Clarke [7, Theorem
6.1.1], we must find bP0, ljP0, j 2 Jðx0Þ, rl 2 R, l ¼ 1; 2; . . . ; q, such that

bþ
X

j2Jðx0Þ
l j þ

Xq
l¼1
jrlj 6¼ 0

and

0 2 bof̂ðx0Þ þ
X

j2Jðx0Þ
l jog jðx0Þ þ

Xq
l¼1

rlohlðx0Þ þNCðx0Þ: ð3:2Þ
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By condition (CQ) b 6¼ 0 and hence, we can set b ¼ 1. Now, making use of
[7, Proposition 2.3.12] and [7, Proposition 2.3.3] we have

of̂ðx0Þ �
Xm
i¼1

oðd s
i fÞðx0Þ þmM co

[
j2I

oðd s
j fÞðx0Þ

 !
: ð3:3Þ

From (3.3) it follows that

obfðx0Þ �X
m

i¼1
ð1þ dimMÞoðd s

i fÞðx0Þ

for some diP0, i ¼ 1; 2; . . . ;m, with
Pm

i¼1 di ¼ 1. Combining this with (3.2)
and recalling that b ¼ 1 we obtain (3.1) where ki ¼ 1þ dimM > 0; i ¼ 1;
2; . . . ;m. (

To give conditions under which necessary conditions given in Theorem
3.1 become sufficient ones for Hartley proper efficiency, we need some new
generalized convexity notions. Section 4 is devoted to introducing and
characterizing these notions.

4. Near Invexity and Near Infineness

Let u : Rn ! R
m be a locally Lipschitz vector-valued map with compo-

nents ui, i 2 I: ¼ f1; 2; . . . ;mg:
uðxÞ ¼ ðu1ðxÞ;u2ðxÞ; . . . ;umðxÞÞs; x 2 R

n:

Let C be a subset of Rn and let x0 2 C.

The following generalized convexity notion is taken from [19].

DEFINITION 4.1. A vector-valued map u is called invex on C at x0 2 C if

8x 2 C; 8ni 2 ouiðx0Þ; i 2 I; 9g 2 TCðx0Þ; such that

uiðxÞ � uiðx0ÞPns
i g; i 2 I:

When m ¼ 1, u is of class C1, and C ¼ R
n this definition reduces to a

generalized convexity notion first given by Hanson [12]. The reader is
referred to [19] for characterizations of invexity in the sense of Definition
4.1 and for applications of this property to nonsmooth alternative theo-
rems and optimization theory.

DEFINITION 4.2. A vector-valued map u is called nearly invex on C at
x0 2 C if

8x 2 C; 8ni 2 ouiðx0Þ; i 2 I; 9gk 2 TCðx0Þ; k ¼ 1; 2; . . . ; such that

uiðxÞ � uiðx0ÞP lim sup
k

ns
i gk; i 2 I: ð4:1Þ
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Obviously, invexity ¼) near invexity. An example will be given later to
prove that the converse implication is no longer true. In other words, the
class of nearly invex maps is strictly broader than that of invex maps intro-
duced in [19].
Before giving characterizations of nearly invex maps let us introduce

some notation. If ni 2 R
n; i 2 I, then we denote by n the n�m – matrix

with columns ni and we write n ¼ ðn1; n2; . . . ; nmÞ. Thus, if x 2 R
n then nsx

is an element of R
m with components ns

i x. For A � R
n we write

nsA ¼
S
fnsa : a 2 Ag.

THEOREM 4.1. The following statements are equivalent:
(a) u is nearly invex on C at x0 2 C.
(b) 8x 2 C; 8ni 2 ouiðx0Þ; i 2 I,

uðxÞ � uðx0Þ 2 nsTCðx0Þ þ R
m
þ: ð4:2Þ

(c) 8x 2 C; 8ni 2 ouiðx0Þ; i 2 I; 8�n 2 NCðx0Þ;
9gk 2 R

n; k ¼ 1; 2; . . ., such that

uiðxÞ � uiðx0ÞP lim sup
k

ns
i gk; i 2 I; ð4:3Þ

0P lim sup
k

�nsgk: ð4:4Þ

(d) 8x 2 C; 8ni 2 ouiðx0Þ; i 2 I; 8�n 2 NCðx0Þ
uðxÞ � uðx0Þ

0

� �
2 n

s
R

n þ R
m
þ � Rþ; ð4:5Þ

where the left side of (4.5) is the vector of R
mþ1 with components

uiðxÞ � uiðx0Þ; i 2 I, and 0 2 R, and n ¼ ðn1; n2; . . . ; nm; �nÞ.

Proof. (a) ) (c) Let gk 2 TCðx0Þ be the sequence mentioned in Defini-
tion 4.2. Since �nsgkO0 for all �n 2 NCðx0Þ and gk 2 TCðx0Þ the validity of
inequality (4.4) is obvious.
(c) ) (b) Assume to the contrary that (4.2) does not hold for some

x 2 C and ni 2 ouiðx0Þ, i 2 I. Then, using a separation theorem and
noting that the right side of (4.2) is a closed convex cone we can find
a vector k ¼ ðk1; k2; . . . ; kmÞz 2 R

m such that

Xm
i¼1

kiðuiðxÞ � uiðx0ÞÞ > 0P
Xm
i¼1

kins
i xþ

Xm
i¼1

kiyi ð4:6Þ

for all x 2 TCðx0Þ and ðy1; y2; . . . ; ymÞs 2 R
m
þ. From this we can derive by a

standard argument that kiO0; i 2 I, and

Xm
i¼1

kins
i xO0; x 2 TCðx0Þ:
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Since the normal cone is the nonpositive polar cone of the tangent cone we
obtain from the last condition that �n 2 NCðx0Þ where

�n ¼
Xm
i¼1

kini: ð4:7Þ

By condition (c) there exists a sequence gk 2 R
n such that (4.3) and (4.4)

hold. Multiplying both sides of (4.3) by ki and summing up the obtained
inequalities we get

Xm
i¼1

kiðuiðxÞ � uiðx0ÞÞO�
Xm
i¼1

lim sup
k

ð�kiÞns
i gk

O� lim sup
k

Xm
i¼1
ð�kiÞns

i gk

¼ lim inf
k

Xm
i¼1

kins
i gk

O lim sup
k

�nsgk

O0:

(In the above argument we use (4.7) and (4.4)). This contradicts the first
inequality in (4.6).
(b) ) (a) Given x 2 C and ni 2 ouiðx0Þ, i 2 I, we can find by (4.2)

sequences gk 2 TCðx0Þ and yk ¼ ðy1k; y2k; . . . ; ymk Þ
s 2 R

m
þ such that, for all

i 2 I,

uiðxÞ � uiðx0Þ ¼ lim
k!1
ðns

i gk þ yikÞ

P lim sup
k

ns
i gk:

Thus, (a) holds.
(c) ) (d) Let x 2 C, ni 2 ouiðx0Þ, i 2 I, and �n 2 NCðx0Þ. Assume to the

contrary that (4.5) does not hold. Then, using a separation theorem
and noting that the right side of (4.5) is a closed convex cone we can
find k ¼ ðk1; k2; . . . ; kmÞs 2 R

m and l 2 R such that

Xm
i¼1

kiðuiðxÞ � uiðx0ÞÞ þ l � 0 > 0P
Xm
i¼1
ðkins

i þ l�nsÞxþ
Xm
i¼1

kiyi þ lr

ð4:8Þ
for all x 2 R

n, ðy1; y2; . . . ; ymÞz 2 R
m
þ and r 2 Rþ. From this we can derive

that kiO0, i 2 I, lO0 and

Xm
i¼1

kins
i þ l�ns ¼ 0: ð4:9Þ
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Now, in view of condition (c) there exists a sequence gk 2 R
n, k ¼ 1; 2; . . . ,

such that (4.3) and (4.4) hold. Multiplying both sides of (4.3) by ki

and both sides of (4.4) by l and summing up the obtained inequalities
we get

Xm
i¼1

kiðuiðxÞ � uiðx0ÞÞO�
Xm
i¼1

lim sup
k

ð�kiÞns
i gk þ lim sup

k

ð�lÞ�nsgk

 !

O� lim sup
k

Xm
i¼1
ð�kiÞns

i gk � l�nsgk

 !

¼ lim inf
k

Xm
i¼1

kins
i þ l�ns

 !
gk

¼ 0 ðby ð4:9ÞÞ:

This contradicts the first inequality in (4.8).
(d) ) (c) Given x 2 C, ni 2 ouiðx0Þ, i 2 I and �n 2 NCðx0Þ, we can find

by (4.5) sequences gk 2 R
n, yk ¼ ðy1k; y2k; . . . ; ymk Þ

s 2 R
m
þ and rk 2 Rþ such

that for all i 2 I,

uiðxÞ � uiðx0Þ ¼ lim
k!1
ðns

i gk þ yikÞ; 0 ¼ lim
k!1
ð�nsgk þ rkÞ:

From these equalities we derive (4.3) and (4.4) since yikP0 and rkP0. (

REMARK 4.1. The characterizations (c) and (d) in Theorem 4.1 show that
near invexity can be expressed in terms of the normal cone NCðx0Þ. It is
worth noticing that in (c) the points gk are not required to be elements of
TCðx0Þ.

COROLLARY 4.1. Definitions 4.1 and 4.2 are equivalent if at least one of
the following conditions is satisfied:

(i) For all ni 2 ouiðx0Þ, i 2 I, the set nsTCðx0Þ þ R
m
þ is closed.

(ii) x0 2 intC.
(iii) m ¼ 1 i.e., u is a real-valued function.

Proof. From Definition 4.1 it is clear that u is invex on C at x0 2 C if
and only if

8x 2 C; 8ni 2 ouiðx0Þ; i 2 I; uðxÞ � uðx0Þ 2 nsTCðx0Þ þ R
m
þ:

Thus in case (i) the conclusion of Corollary 4.1 is derived from the charac-
terization (b) of Theorem 4.1. To conclude the proof of Corollary 4.1 it
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suffices to show that each of conditions (ii) and (iii) implies (i). Indeed, in
case (ii) TCðx0Þ ¼ R

n. Therefore, nsTCðx0Þð¼ ns
R

nÞ is a subspace of Rm and
hence, nsTCðx0Þ þ R

m
þ is closed, as required. To see that (iii) ) (i) it is

enough to remark that each cone in R containing 0 2 R must be closed,
and that nsTCðx0Þ þ Rþ is such a cone. (

REMARK 4.2. From Corollary 4.1 it is clear that the class of nearly invex
maps at x0 2 C is strictly broader than that of invex maps only if mP2
and x0 62 intC. The following example 4.1 proves that there do exist nearly
invex maps which are not invex. This example is constructed on the basis
of Example 2.2.8 of [8] which is used in [8] to prove that the image of a
closed convex cone via a linear continuous map may not be closed.

EXAMPLE 4.1. Let C ¼ fx ¼ ða; b; cÞ 2 R
3 : aP0; bP0; 2acPb2g and

uðxÞ ¼ uða;b; cÞ ¼ ðu1ða;b; cÞ;u2ða;b; cÞÞs ¼ ð�a2 þ b; cÞs. Let x0 ¼ ða0;
b0; c0Þs ¼ ð0; 0; 0Þs. Obviously, TCðx0Þ ¼ C and ouiðx0Þ ¼ fnig, i ¼ 1; 2,
where n1 ¼ ð0; 1; 0Þs, n2 ¼ ð0; 0; 1Þs. Setting n ¼ ðn1; n2Þ we see that

nsTCðx0Þ ¼ fðb; cÞ 2 R
2 : c > 0g [ fð0; 0Þg

and for all x 2 C,

uðxÞ � uðx0Þ 2 nsTCðx0Þ ¼ nsTCðx0Þ þ R
2
þ:

Thus u is nearly invex on C at x0 2 C (see Theorem 4.1). But u is not in-
vex on C at x0 since

uðxÞ � uðx0Þ 62 nsTCðx0Þ þ R
2
þ;

where x ¼ ð1; 0; 0Þs.
It is remarked in [12] that invexity notions are useful for studying suffi-

cient conditions in optimization problems with inequality constraints since
the Lagrange multipliers associated to inequality constraints are nonnega-
tive. Unfortunately, the Lagrange multipliers associated to equality con-
straints may be negative and hence, invexity notions are not suitable for
such constraints. In [19] a modified version of invexity is introduced and is
proved to be useful for equality constraints. This is the notion of infineness
which is recalled in the following definition.

DEFINITION 4.3. [19]. A vector-valued map u is called infine on C at x0
if

8x 2 C; 8ni 2 ouiðx0Þ; i 2 I; 9g 2 TCðx0Þ such that

uiðxÞ � uiðx0Þ ¼ ns
i g; i 2 I:
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We now generalize this notion. The new generalized version is called
near infineness.

DEFINITION 4.4. A vector-valued map u is called nearly infine on C at
x0 2 C if

8x 2 C; 8ni 2 ouiðx0Þ; i 2 I; 9gk 2 TCðx0Þ; k ¼ 1; 2; . . . ;

such that

uiðxÞ � uiðx0Þ ¼ lim
k!1

ns
i gk; i 2 I: ð4:10Þ

Obviously, infineness ) near infineness. Example 4.1 proves that the
converse implication is no longer true. Thus, the class of nearly infine maps
is strictly broader than that of infine maps.
By arguments similar to those used in the proof of Theorem 4.1 we can

obtain the following theorem which gives characterizations of nearly infine
maps.

THEOREM 4.2. The following statements are equivalent:
(a) u is nearly infine on C at x0 2 C.
(b) 8x 2 C; 8ni 2 ouiðx0Þ; i 2 I;

uðxÞ � uðx0Þ 2 nsTCðx0Þ:
(c) 8x 2 C; 8ni 2 ouiðx0Þ; i 2 I; 8�n 2 NCðx0Þ; 9gk 2 R

n; k ¼ 1; 2; . . . ;
such that

uiðxÞ � uiðx0Þ ¼ lim
k!1

ns
i gk; i 2 I;

0P lim sup
k

�nsgk:

(d) 8x 2 C; 8ni 2 ouiðx0Þ; i 2 I; 8�n 2 NCðx0Þ,
uðxÞ � uðx0Þ

0

� �
2 n

s
R

n þ f0g � Rþ:

Observe that in the right side of the last inclusion 0 denotes the origin of
R

m while in the left side 0 stands for the origin of R.

COROLLARY 4.2. Definitions 4.3 and 4.4 are equivalent if at least one of
the following conditions is satisfied:

(i) For all ni 2 ouiðx0Þ, i 2 I, the set nsTCðx0Þ is closed.
(ii) x0 2 intC.
(iii) m ¼ 1 i.e., u is a real-valued function.
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The relationships between near invexity and near infineness are given
in the following theorem.

THEOREM 4.3. (i) If u is nearly infine on C at x0 2 C then u is nearly in-
vex on C at x0.

(ii) If the vector-valued map
u
�u

� �
is nearly invex on C at x0 2 C then u

is nearly infine on C at x0.

Proof. The first part of Theorem 4.3 is obvious. To prove the second
one let us take x 2 C and ni 2 ouiðx0Þ; i 2 I. Since �ni 2 oð�uiÞðx0Þ; i 2 I,
and since

u
�u

� �
is nearly invex we must find gk 2 R

n; k ¼ 1; 2 . . . , such

that, for all i 2 I,

uiðxÞ � uiðx0ÞP lim sup
k

ns
i gk;

ð�uiÞðxÞ � ð�uiÞðx0ÞP lim sup
k

�ns
i gk:

From these inequalities it follows that

lim sup
k

ns
i gkOuiðxÞ � uiðx0ÞO lim inf

k
ns
i gk:

This proves (4.10), as required. (

REMARK 4.3. If u is nearly infine on C at x0 then
u
�u

� �
may not be

nearly invex on C at x0. In other words, the converse of statement (ii) in
Theorem 4.3 is no longer true. The following example taken from [19] illus-
trates this fact: C ¼ R, x0 ¼ 0 2 R and

uðxÞ ¼
1
2 x if xP0,

x if x < 0.

�

We conclude this section by introducing a notion which is a combination
of near invexity and near infineness.
Let f and h be locally Lipschitz vector-valued with components fi,

i ¼ 1; 2; . . . ;m, and hl, l ¼ 1; 2; . . . ; q. We say that
f
h

� �
is nearly invex-in-

fine on C at x0 if f is nearly invex on C at x0 and h is nearly infine on C at
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x0, with the same sequence gk mentioned in each of these definitions. More

exactly,
f
h

� �
is nearly invex-infine on C at x0 if

8x 2 C; 8ni 2 ofiðx0Þ; i ¼ 1; 2; . . . ;m; 8n0l 2 ohlðx0Þ; l ¼ 1; 2; . . . ; q;

9gk 2 TCðx0Þ; k ¼ 1; 2; . . . ; such that

f iðxÞ � fiðx0ÞP lim sup
k

ns
i gk; i ¼ 1; 2; . . . ;m;

hlðxÞ � hlðx0Þ ¼ lim
k!1

n0
s
l gk; l ¼ 1; 2; . . . ; q:

5. Sufficient Conditions for Hartley Proper Efficiency in Nonsmooth Vector

Optimization Problems

The following theorem shows that under the near invex-infineness property
the converse statement of the conclusion of Theorem 3.1 is true.

THEOREM 5.1. Let x0 2 Q and let Jðx0Þ ¼ fj : g jðx0Þ ¼ 0g. Let ~F be the

vector-valued map with components d s
i f; i 2 I, and g j, j 2 Jðx0Þ. Let

~F
h

� �

be nearly invex-infine on C at x0. If there exist ki > 0, i ¼ 1; 2; . . . ;m, ljP0,
j 2 Jðx0Þ, and rl 2 R, l ¼ 1; 2; . . . ; q, such that (3.1) holds then x0 is a Hart-
ley properly efficient point of (P).

Proof. From (3.1) it follows that there exist ni 2 oðds
i fÞðx0Þ, i ¼ 1; 2; . . . ;m,

~nj 2 og jðx0Þ, j 2 Jðx0Þ, ~~nl 2 ohlðx0Þ, l ¼ 1; 2; . . . ; q, and �n 2 NCðx0Þ such that

��n ¼
Xm
i¼1

kini þ
X

j2Jðx0Þ
lj~nj þ

Xq
l¼1

rl
~~nl: ð5:1Þ

Let x 2 Q be an arbitrary point. By the near invex-infineness property
there exist gk 2 TCðx0Þ, k ¼ 1; 2; . . ., such that

kid s
i ðfðxÞ � fðx0ÞÞP lim sup

k

kins
i gk; i ¼ 1; 2; . . . ;m;

ljðg jðxÞ � g jðx0ÞÞPlim suplj~n s
j gk; j 2 Jðx0Þ;

rlðglðxÞ � glðx0ÞÞ ¼ lim
k!1

rl
~~nlgk; l ¼ 1; 2; . . . ; q:

Summing up all these inequalities and equalities, and noting that g jðxÞO0,
g jðx0Þ ¼ 0, hlðxÞ ¼ hlðx0Þ ¼ 0 we obtain

Xm
i¼1

kid s
i ðfðxÞ � fðx0ÞÞP lim sup

k

Xm
i¼1

kini þ
X

j2Jðx0Þ
lj~nj þ

Xq
l¼1

rl~nl

0
@

1
A

s

gk:
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From this and (5.1) we get

WðxÞ :¼
Xm
i¼1

kids
i ðfðxÞ � fðx0ÞÞP lim sup

k

��n
s
gk:

But the right side of this inequality is nonnegative since �n 2 NCðx0Þ and
gk 2 TCðx0Þ. Since x is an arbitrary point of Q this shows that W attains
its minimum at x0. Applying Corollary 2.3 and observing that

Pm
i¼1 kidi 2

Dþi, we claim that x0 is a Hartley properly efficient point of (P). (
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